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Methods of statistical mechanics are applied to two important NP-complete 
combinatorial optimization problems. The first is the chromatic number 
problem, which seeks the minimal number of colors necessary to color a graph 
such that no two sites connected by an edge have the same color. The second is 
partitioning of a graph into q equal subgraphs so as to minimize intersubgraph 
connections. Both models are mapped into a frustrated Potts model, which is 
related to the q-state Ports spin glass, For the first problem, we obtain very 
good agreement with numerical simulations and theoretical bounds using the 
annealed approximation. The quenched model is also discussed. For the second 
problem we obtain analytic and numerical results by evaluating the ground- 
state energy of the q = 3 and 4 Potts spin glass using Parisi's replica symmetry 
breaking. We also perform some numerical simulations to test the theoretical 
result and obtain very good agreement, 

KEY WORDS: NP-complete optimization problems; spin glass; Potts 
model; graph coloring; graph partitioning. 

1. I N T R O D U C T I O N  

In  recen t  years,  the re  has  been  m u c h  in te res t  in i nves t iga t ing  va r i ous  c o m -  

b i n a t o r i a l  o p t i m i z a t i o n  p r o b l e m s  us ing  the  concep t s  a n d  m e t h o d s  o f  

s ta t i s t ica l  mechan ics .  Spec ia l  a t t e n t i o n  has  been  c o n c e n t r a t e d  on  the so- 

ca l led  N P - c o m p l e t e  o p t i m i z a t i o n  p r o b l e m s ,  wh ich  are  very  h a r d  to dea l  

with. O p t i m i z a t i o n  p r o b l e m s  such  as the  t r ave l ing  s a l e s m a n  p r o b l e m ,  (1 3) 
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graph bipartitioning, (4) planar graph coloring, ~5~ and the bipartite 
matching problem (6) (a P-class problem) were analyzed using the ideas and 
techniques of disordered systems such as a spin glass. 

In simple terms, NP-complete problems are difficult in the sense that it 
is extremely unlikely that an algorithm whose computing time goes as a 
polynomial function of the size of the problem can be found; "complete" 
means that for all those NP-complete problems, if a polynomial algorithm 
is found for any one of them, then polynomial algorithms exist for all the 
others. (7) But until now, despite the innumerable efforts by mathematicians 
and computer experts, no polynomial algorithm has been found for any of 
these NP-complete problems; so it is highly probable that such polynomial 
algorithms do not exist. Thus, from the practical point of view, the time 
needed to find a numerical solution to the NP-problems grows faster than 
any polynomial function of the size of the problem and for large systems, 
the direct approach very quickly becomes intractable. 

Fortunately, statistical mechanics often deals with systems of large size 
(thermodynamic limit) and thus may provide a general understanding of 
the nature of the NP problem. The approach is to treat the NP problem as 
a random system with the random variables following a certain probability 
distribution and to extract the generic or average information and obtain 
the most probable results. Thus, one obtains results that do not depend on 
the particular realization of the problem, but are applicable to "almost all" 
realizations as the size of the problem becomes very large. In addition, this 
theoretical investigation might help to improve the heuristics of the 
algorithm in searching for the optimal solution. 

Many of the combinatorial optimization problems have much in com- 
mon with the spin-glass model. (1~) The reason for this similarity is that in 
searching for the optimal solution in a combinatorial optimization 
problem, the algorithms can often get trapped in one of the many local 
minima and fail to reach the absolute minimal solution. A spin-glass model 
is also characterized by many local minima of its free energy. 

In this paper, we will study the statistical mechanics of two NP-com- 
plete problems using the q-state Potts model as our tool. These problems 
are the chromatic number problem and the q-partitioning of a graph. The 
practical applications of these problems in the real world are discussed in 
the following sections. 

2. THE C H R O M A T I C  N U M B E R  PROBLEM 

2.1. The Problem 

The problem is specified as follows: Given a graph G(V, E), where V is 
the set of vertices (1 VI = N) and E is the set of edges, what is the minimum 
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number of colors (the chromatic number X) needed to color the vertices 
such that no two vertices connected by an edge will have the same color? 
The planar version of this problem is related to the famous "four-color 
theorem," which states that for any planar map the chromatic number is at 
most four. (8) However, the general problem of determining the chromatic 
number was shown to be NP-complete. (9) 

A well-known application of this problem is as follows: At the end of 
the semester, students should sit for examinations within a short period of 
time. It is desirable that each student sits daily for at most one examination 
and all students having the same examination take it at the same time, and 
the number of days needed to finish all examinations should be minimized. 
Let V be the set of examinations and Y be the set of students. For each 
examination v, let S(v)c Y be the set of students who must take v. Con- 
struct the graph G(V, E), where (v, v') e E if S(v) c~ S(v') ¢ ~ (i.e., v and v' 
cannot be held at the same time). Then a coloring of G corresponds to a 
possible assignment for the set of examinations. The number of colors is the 
number of days needed and the problem reduces to that of finding x(G). 

In this paper, we investigate the random version of the chromatic 
problem, i.e., the graph G is a random graph GN, p, where N is the number 
of vertices and p is the probability that any two vertices are connected by 
an edge (model A in graph theory(~°)). Two important results due to Erdos 
and Spencer (11) and Bollobas and Erdos (n~ are on the bounds of )~ for 
almost every G N, p: 

For p = 2c/N and c large, 

c 2c 
- -  ( 2 . 1 )  [1 + o(1)]  7--- < z < [1 + o(1)]  
l n c  l n c  

where o(1) is with respect to c. 
For p fixed, independent of N, 

(2_ e) Nln[1/(1-- N_ Nln[1/(1  - p ) ]  
< Z < ( 1  +e )  (2.2) 

In N 

In the case of (2.2), the upper bound is obtained by the "greedy 
algorithm, ''(]3) which can color the graph satisfactorily, but the number of 
colors used may not be minimal. It is believed (]2) that most likely the 
greedy algorithm uses twice as many colors as necessary and hence ): 
should be closer to the lower bound. Furthermore, it was conjectured (13) 
that ;g goes to the lower bound as N--* oo in (2.1) and (2.2); however, there 
has been no proof of this. No known polynomial algorithm can 
approximate )~ to within any constant factor. {14"15) Also, there has not been 
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much simulation work done for large N; after all, this is an NP problem. 
One result is, (16) for Glooo, o.5, 

Z ~ 85 _ 12 (2.3) 

In the next section, we show how methods of statistical mechanics yield 
results that agree with (2.1)-(2.3). 

2.2. Statistical Mechanical Treatment 

It has been shown that the graph coloring problem is related to the 
Potts model (17'18) and we shall make use of this idea by considering the q- 
state antiferromagnetic Potts Hamiltonian 

N 

H= ~ Jij(Jrricrj (2.4) 
i < j  

where ai, which can take q values (colors), is the spin at the ith vertex; 
Ja > 0 is the coupling between the vertices i and j ;  and N is the number of 
vertices. We consider a random graph G~,p; Ju has the distribution 

p(Jij)=p6(J~-J)+(1-p)6(J~); J > 0  (2.5) 

Ju = 0 means that there is no edge joining vertices i and j. Since 

lim exp(-flJu6~,~j)= {01 iff Jo.vaOand a , = a j  (2.6) 
r  iff Jij=Oor~yir 

it is evident that the zero-temperature partition function 

lim Z c =  lim T r e x p ( - f i  
N ) 
~.Ju6~,oj =---PG(q, N) (2.7) 

l < ]  

gives the number of ways to color G with q colors such that no two vertices 
connected by a bond have the same color. 

Since Pc(q, N) is a nondecreasing function of q, )~ is given by the 
minimal integer value of q such that P6(q, N) attains its least positive 
integer value. Notice that this model, (2.4) and (2.5), contains an important 
element, namely frustration, which gives rise to interesting features. 

We then compute the average Pa with probability distribution given 
by (2.5), or in spin-glass terms, we calculate the "annealed average." Using 
(2.5), one has 
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N 

Za(q, N; fl) = Tr ~ [p exp( -flJ6~i~j ) + 1 - p] 
a i < j  

= T r e x p  { ln [1 -  p ( 1 -  e-#S) ] L. ~aio-j} (2.8) 
~7 i <  J 

Taking the limit p ~ o% we obtain 

/sa( q, N) = lim Zc = Tf exp - ln[1/(1  - p)]  ~ (2.9) 
f l ~ o o  l < j  

i.e., the average number of ways to color GN, p using q colors can be written 
as the partition function of an infinite-range antiferromagnetic Potts model 
with coupling constant ln[l/(1 - p ) ] .  Using the results of the infinite-range 
antiferromagnetic Potts model (see Appendix A), one gets from (A.3) 

- K  N - K N  (2.10) 

We distinguish now the two cases p = 2c/N and p independent of N. In the 
first case 

- - = - - + O  (2.11) In 1 - p  N 

In this case K =  2c and 

fiG(q, N)= (qe ~,/q)N (2.12) 

Thus, the value of q that makes this quantity equal to 1 is given by 

q*e -~'/q* = 1 i.e., q* In q* = c (2.13) 

o r  

c { ln lnc  ~{ln In c)2]~ 
q*=l-n-~c l + ~ + ~  lnc ] ] J  

(2.14) 

Note that in this case the "free energy" In Pc is extensive (oc N). The Z is 
given by [q*], where [ ] denotes the next higher integer. 

In the case that p is independent of N, 

1 
K =  Nln - -  

1 - p  
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Fig. 1. (a) Solution of (2.13): X versus c. ( - - )  The upper and lower bounds from (2.1). 
(b) Solution of (2.16): X versus p for N =  1000. ( - - )  The upper and lower bounds from (2.2). 
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and we find from Eq. (A.3) that 

Pc(q, N ) =  [q(1 - p)Xi2q]N (2.15) 

and hence 

q*(1 - p)Unq* = 1 (2.16) 

which implies 

Nln[1/(1-p) ]  
q* = (1 + 7) (2.17) 

21nN 

where 

l n l n N  ln{ln[1/(1-p)]/2} +o[(lnlnN)2 ] (2.18) 
7 = In N In N L L ~ / J  

and X is equal to [q*]. 
We see that the value (2.14) is consistent with the bounds given by 

(2.1) and actually coincides with the lower bound. If one is to trust the 
annealed approximation, it also yields the o(1) term in (2.1) as spelled out 
in Eq. (2.14). Similarly, Eq. (2.17) lies between the bounds given in (2.2) 
and the leading corrections to the lower bound are given in Eq. (2.18). 
Ignoring terms of O(1) with respect to N, the result coincides with the 
lower bound as given in Eq. (2.2), as has been conjectured. (12"~3) Numerical 
solutions of Eqs. (2.13) and (2.16) that take into account the corrections to 
the leading N results are displayed in Fig. 1. For Gloo0,0.5 , Eq. (2.2) yields 
5 0 < Z <  100, whereas our numerical result gives ;(=80. As mentioned 
before, numerical simulations (~6) yield Z = 85 _+ 12. 

2.3.  D i s c u s s i o n  

Unlike the graph partitioning, matching, and traveling salesman 
problems, in which the cost function is directly related to the energy or 
Hamiltonian of the corresponding spin system, in the chromatic number 
problem, the variable of interest, 2, is not directly related to the energy. 
The relevant quantity is the zero-temperature partition function or Pc(q), 
which is the number of ways to color G. In a simulation, one would first 
find )~6 for each G generated by calculating the lowest integer [q*] for 
which PG(q)~> 1, and then take the average Z = Za. But there is no guaran- 
tee for the self-averageness of )C! Loosely speaking, extensive quantities are 
self-averaging. By a simple argument similar to Brout, (19) for p =2c/N (a 
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short-range system), In Pc is self-averaging. In fact, our calculation shows 
that, for finite q, in order to keep In Pc extensive, one has to choose 

N l n [ 1 / ( 1 - p ) ] = c o n s t ,  i.e., p=cons t / N + O(1 / N  2) (2.19) 

However, the short-ranged spin glass is still intractable, which makes In PG 
impossible to calculate. And the "annealed" result (2.17) seems the best one 
can get at this time. In Appendix B, we show the version of the short-range 
spin glass corresponding to the chromatic number problem. 

For the case p = const, independent of N, things get more complicated. 
First, we know that Z ~ N/ln N, which is not extensive, hence )~ may not be 
self-averaging. Second, since now In Pa depends on q, which goes as 
N/ln N, this strange dependence on N makes In PG also not extensive. Even 
before taking the zero-temperature limit and retaining both J and fl in the 
calculation, we did not find a way to scale J or fi with N to make In Pa 
extensive. 

3. q - P A R T I T I O N I N G  OF G R A P H  

3.1. The  Prob lem and Sta t is t ica l  M o d e l  

This problem is also specified by a graph G( V, E), where l VI = N is an 
integral multiple of q. One is then asked to divide the N vertices into q 
groups of equal size, say V= 07=1 Vi, such that the total number of 
intergroup edges is minimized. This problem and its generalizations are 
frequently encountered in the real world; a few examples are listed below: 

In assigning chips to circuit boards in computer design, one likes to 
group electrical modules into packages so as to minimize the connections 
between packages. (2~ In placing a collection of intercommunicating 
routines onto a paged storage device, one wishes to put routines that 
reference each other on the same page in order to minimize page faults 
during execution. (2~) In the business world, workers in a multistory office 
building who frequently interact with each other should be placed on the 
same floor in order to minimize the effort of traveling up and down. 

The q-partitioning of a graph is an NP-complete problem and some 
studies had been done by MacGregor ~22) and Bui et al. ~23) The special case 
of graph bipartitioning was investigated in terms of statistical mechanics by 
Fu and Anderson. (4) In this paper, we generalize the case to q-partitioning 
of a graph and obtain results for 3- and 4-partitioning of random graphs. 

Random graphs GN, p of the type discussed in the previous section are 
again considered. We define a spin system corresponding to the graph by 
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associating a q-state Potts spin ai with the ith vertex and considering the 
Hamiltonian 

- 2  N 
H= ~ J~(q6~j- 1) (3.1) 

q i < j  

where J~ = J if the corresponding edge of G exists and zero otherwise. 
Thus, for random graphs that obey the distribution (2.5), this is essentially 
a dilute, infinite-range ferromagnetic Potts system with the constraint 

1 

If we choose the possible values of ~i to the various qth roots of unity, then 
the constraint (3.2) is equivalent to the q -  1 constraints 

N 

~ ~ = 0  for r =  l, 2,..., q - 1  (3.2') 
i = l  

When the graph G is partitioned into q equal subgraphs, all the spins that 
take the same value belong to the same subgraph. Thus, (3.2) and (3.2') 
just follow from the requirement that the q subgraphs are equal and 
mutually exclusive. From (3.1) we can write H as 

i, VI i j 6  Vq 

+ 
i~ VI i e  g I i e  Vq i~ Vq 
j e V 2  j e V q  j ~ V I  / c V q  1 

- p ( q -  1 ) J N ( N -  1) 
- + 2 C J  (3.3) 

q 

where C is the cost function to be minimized. It measures the total number 
of bonds (edges) that connect sites belonging to different subgraphs. From 
(3.3) it follows that 

H N(N-1)p(q-1)  
C =  ~-)+ 2q (3.4) 

Note that the antiferromagnetic constraint (3.2) causes spin frustration and 
leads to the difficulty of an NP problem. To calculate the average 
optimized cost function, one needs to compute the average free energy at 
zero temperature, as shown in the following section. 
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3.2. R E S U L T S  A N D  D I S C U S S I O N  

Starting with the Hamiltonian (3.1) and the constraint (3.2), we derive 
in Appendix C an expression for the cost function C given Eq. (3.4) in the 
form 

C= N2p( q - 1) F 
- -  + l i m  - -  ( 3 . 5 )  

2q ~ ~ ~ 2J 

with 

- f l F =  N ( q -  1) K2p(1 - p) 

+ lim r exp - -  ~ (ar)r(ar) ~' - 1 
n ~ o o  c ~ < 7  r , r =  1 i = l  

(3.6) 

where K =  fljN1/2/q. Here J is taken to be of 0(1/N1/2), and thus K ~  O(1) 
with respect to N. 

Equation (3.6) is of the form of the free energy of a Potts spin glass, 
and can be simplified along lines similar to that of the Ising spin glass as 
was first done by Sherrington and Kirpatrick (24) and further improved in 
the ordered phase by Parisi. (25) Some aspects of the Potts spin glass of the 
infinite-range type were investigated by Elderfield and Sherrington (26~ and 
by Gross et al. ~27~ These authors found that the order of the finite-tem- 
perature phase transition changes for q > 4 as opposed to q < 4. But the 
ground-state energy for the case of q = 3 and q = 4 that is required for the 
3- and 4-fold graph partitioning has not been done. Here we will report on 
a derivation of the ground-state energy with a first-stage replica-symmetry 
breaking (RSB), using similar steps to those used by Parisi (25) in the case of 
q=2.  

Performing a Gaussian transformation to decouple the quartic spin 
term in the exponent of Eq. (3.6) by introducing the Edwards-Anderson 
order parameter Q~, one obtains 

f lF/N= - ( q  - 1) KZp(1 - p) + Max{f  (Q) } (3.7) 

with 

f ( Q ) = ] i m  n 8KZp-~--p ) Q ] , - l n T r e x p  ~ Q~, (a~a') r 

(3.8) 

To take the limit n--+ 0, one has to break the replica symmetry of the 
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matrix Q~ in order to obtain the correct answer. With first-stage RSB 
approximation, the matrix Q~ is divided into blocks characterised by the 
parameter m in the following way: The replica index ~ is grouped into n/m 
clusters, where n ~> m >~ 1, with 

Q ~ = 0  

Q~y(~r if ~,7~samecluster  (3.9) 

Q1 otherwise 

In taking the limit n--+ 0, m may take nonintegral values 1 ~> m >~ 0. In 
other words, the well-known order parameter function Q(x) is a single step 
function with the breaking point x = m. The replica-symmetric case can be 
obtained by setting Q0 = Q1. Following a similar procedure as in the Ising 
case, we obtain for the q-state Ports model 

f (Q ) = - (  q -  1) q2K2{q2[(1 - m) Q~ + mQ~]/16 - Qo/2} 

I 
f D(x, y)In k J[f D(u, v) m 

x rexp qK Q1/2 ~ (xrRecr ~+y~Im~r )  
r = l  

+ (Qo-QI)  1/2 ~ (urRear+VrIma r) (3.10) 

where K'= [p(1 - p)]1/2 K and 

f D(x, y) = ~ \ - - ~ - - n  exp 2 

Then F is maximized using a standard routine and the zero-temperature 
energy is obtained. From (3.5) the cost function is then 

u q N 3 / 2 [ p ( l  _ p ) ]  1/2 C= N2p(q-1) ~- (3.11) 
2q 2 

where Uq is independent ofp  and N. Values of Uq for q-- 2, 3, 4 with no and 
first-stage replica symmetry breaking are shown in Table I. The value of uoo 
is obtained from Gross eta/., ~27) who discuss the limit q --+ oo. 

From a simple consideration, the expected number of intercluster 
edges without minimization would be 

1 N 2 p ( q  - 1) (3.12) N ( q - 1 ) N P 2 -  2q 

822/'48/3-4-11 
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o No Replica Symmetry  Breaking, Table I. Values of uq, 
1 First-Stage Replica Symmetry  Breaking ~ and uq, 

q - u  ~ _ u  I 

2 0.80 0.76 

3 1.00 0.98 

4 1.10 1.08 

~o 2(ln q/q)l/2 

a The value of q --* oo is f rom Gross  et aL (27) 

Thus, the second term in (3.11) is the improvement due to optimization. 
To compare our result for q = 3, we simulate random graphs and find 

the near-optimal cost function (after all, this is an NP problem; no 
polynomial algorithm can guarantee an absolute optimal solution) with the 
computer. The algorithm we use first divides the graph arbitrarily into 
three parts. It then checks if interchanging two sites belonging to two dif- 
ferent subgraphs lowers the number of intersubgraph edges. If it does, the 
two sites are interchanged and the procedure continues until no further 
improvement can be achieved. The results are shown in Table II. The 
agreement is better for larger N, as expected, since (3.11) holds in the 
large-N limit. Also, MacGregor's (22) result on random graph analysis 
indicated that for q~>2 almost all edges are intercluster edges (i.e., 
C ~ NZp/2) and there is no improvement due to optimization. This agrees 
with our result from (3.11) and Table I for q--, oe. 

Table l l .  Values of Cl/Czfor q = 3  a 

CdC2 

p N = 30 N = 48 N = 99 

0.2 1.51 1.14 1.07 

0.5 1.12 1.08 1.06 
0.8 1.49 1.15 1.02 

a Cx is the average  cost  funct ion from s imula t ion  of several  ran-  
d o m  graphs,  ten g raphs  for N =  30, five for N = 48, and  one for 
N =  99. The values of C2 are f rom (3.11) wi th  u~ in Table  I. 
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4. CONCLUSION 

In this paper, we have studied the chromatic number problem and the 
problem of q-partitioning of a graph. Both are NP-complete optimization 
problems, which can be formulated in statistical mechanical terms by a 
dilute Potts model with the essential feature of frustration. 

The "annealed" results (2.14) and (2.17) of the chromatic number 
problem agree surprisingly well with all the known bounds, the experimen- 
tal datum, and even with the conjecture. However, difficulties arise in the 
"quenched" case, first in the intractability of the short-range ( p ~  l/N) 
spin-glass system and the inextensivity of ln P a in the long-range 
(p = const) situation. 

For the problem of q-partitioning of a graph, we generalized the 2-par- 
titioning problem and obtained analytically the expression for the cost 
function for general q. Explicit results are obtained for q = 3 and 4, and the 
q=  3 result is checked against our numerical simulation; the agreement 
seems very good. 

APPENDIX  A 

x # For f i l l= (K/N)32i< j ~,~, with K>0 ,  one gets (17/ 

fiF(Xi)N - ~ ( x i l n x ~ + - ~  -~) with ~ x i = l  (A.1) 
/ = 1  i = I  

where x~ is the fraction of spins in the ith state, x~ = 1/q for all i is a dis- 
ordered solution and is the ground-state solution, since the system is fully 
frustrated. Thus 

KN 
flF= - N  In q + = - In  Z (A.2) 

2q 

and 
Z = qNe - KN/2q (A.3) 

APPENDIX  B 

In this Appendix, we show how the calculation of In Pa for the graph 
coloring problem maps into a Potts spin-glass model. This method is a 
generalizaton of the method used by Fu and Anderson (4~ for a bond dilute 
Ising model. Starting from the Hamiltonian (2.4), 

N 

H= ~ Jg6~,~: (B.1) 
i < j  
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the quenched average of In Tr e -~u over the probability distribution (2.5) 

P(Jo) = p6(Jo- J) + (1 - p) 6(Jo.) (B.2) 

is performed using the replica trick: 

Z--g= Tr ~ . f  dJijP(Jo)exp ( - f l  ~ Joa.~j) 
" c ~ = l  l '< J 

= T r  I~11p exp ( - f l J  ~ 6o~y) + (1 - P) 1 
i < j ~  ~ = 1  

 ' 2.rexp loLl+ 0 xp( . 
r* i < j  c t = l  

where Po = p/(1- p). After expanding the logarithm in a power series and 
some algebra, we find 

Z---~=Trexp[ - N ~  2 ~=~ ~ (--flJ)~Gnklexp[k~ ----~c~(--flJ)k ~(~,j ~ = ~ 6 ~ ; ) k ]  

(B.4) 

where 

( _ ) t +  1 l ~ 
I (B.5) 

l = l  

In the limit n ---, 0, only the term with k = 1 in the first exponential of (B.4) 
has to be retained. In the second exponential, the term with k = 1 induces 
an antiferromagnetic interaction between the spins; the term with k = 2 is 
the same as for the ordinary Potts spin glass. When p = 2c/N we have 
ck ~ 1IN and hence one has to take flJ~ O(1) with respect to N in order to 
obtain an extensive "free energy." Hence, in this short-range problem, all 
values of k contribute. Such a model is still intractable at this time. 

On the other hand, for p ~ O(1), one has c~ ~ O(1). If q were also of 

O(1) with respect to N, one could choose J ~  O(1/x/-N) and only the k = 2 
term would have contributed. Unfortunately, in the chromatic number 
problem under consideration, q ~ O(N/ln N), and so far we have not found 
an appropriate way to scale J in order to obtain a correct solvable 
thermodynamic limit out of (B.4). 
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A P P E N D I X  C 

We start with the Hamiltonian (3.1) and choose a representation 
where the spins a s take their values from the set of q-roots of unity: 

ai~ {exp(2~in/q)Jn=O, 1,..., q -  1} (C.1) 

We then go through similar steps to those outlined in Appendix B and 
obtain instead of Eq. (B.4) the result 

--Z"= [-N ~ (flj)k cknk; T r ' e x P k  2 ,= l  

k , 2 \  q J ck (qa~;~7-1) (C.2) 
I !  9c I 
�9 ' = 

and the free energy is given by 

Z" - I  
- f i F  = l i r a  - -  ( C . 3 )  

. ~ 0  H 

The prime on the trace reminds us that the summation over the spins is 
subjected to (3.2) or (3.2'). From (3.2) it follows that 

, expE d 
2 a.=l 

{@ 1 2fij a. ~ [  ,~ ?a-}  exp ( V )  ck 
k 2 " ~  i . /  :x 1 

(C.4) 

As fl --+ oo, the free energy F becomes the energy of the system. Hence, from 
Eq. (3.4) and (C.3), we find 

C-  N2p(q - 1) + lira --F (C.5) 
2q /~ ~ ~_ 2J  

with 

- f lF= lim -1 Tr '  exp 
n ~ 0 Y /  k 2 

ck (o',o[/) -- 1 
i , )  : ~ = l  r = l  

(C.6) 

where we have used the representation 

q 1 

q ~ , ~ =  1 + ~, (a,a*)~ ((C.7) 
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In order to obtain a sensible thermodynamic limit, it is necessary to scale J 
to be order 1 / , , ~  [-since ck~  O(1) with respect to N] .  In that case only 
the term with k = 2 needs to be kept and we find, with c2 =-p(1 - p ) / 2 ,  

- f l F =  N ( q -  1) K2p(1 - p) 

+ T r '  e x p  2 N K 2  - p )  E c~ r ./ r" ) , ( o , )  ( , ~ , )  - 1 
~<7r,r=l i=1 

(c.8) 

where K=flJNJ/2/q. It can be shown that the constraints (3.2) are 
irrelevant at T =  0 (by arguing along lines similar to Fu and Anderson(41), 
and one can evaluate the trace over the spins in (3.8) disregarding the con- 
straint. Equation (C.8) is the form of the free energy of the infinite-range 
Potts spin glass. 
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